文章摘要
宋汉强,钱仁军,滕怀亮,闫思齐.基于粒子群算法的涡扇发动机气路性能修正[J].,2019,34(4):371-375
基于粒子群算法的涡扇发动机气路性能修正
Turbofan Engine Gas Performance Model Modification Based on Particle Swarm Optimization
  
DOI:10.7682/j.issn.1673-1522.2019.04.006
中文关键词: 涡扇发动机  部件级模型  模型修正  粒子群算法
英文关键词: turbofan engine  component-level model  model correcting  particle swarm optimization
基金项目:
作者单位
宋汉强 海军研究院,上海 200436 
钱仁军 海军航空大学,山东烟台 264001 
滕怀亮 海军航空大学,山东烟台 264001 
闫思齐 海军航空大学,山东烟台 264001 
摘要点击次数: 0
全文下载次数: 0
中文摘要:
      针对由于建模过程中条件简化及发动机零部件的差异性导致的发动机数学模型计算结果与整机性能实测数据偏差较大的问题,提出基于粒子群算法(PSO)的发动机模型修正方法,运用修正因子提高模型计算精度。将修正后发动机模型的计算结果与实测数据对比,结果表明:运用 PSO算法对模型进行的修正能够显著提高模型的精度,修正前模型计算值与实测值的最大误差达 4.85%,修正后最大误差只有 0.97%,修正效果良好,且涡轮等后端部件比压气机等前端部件精度提高更为明显。
英文摘要:
      In order to solve the problem of large deviation between the calculated results of engine mathematical model andthe measured data of engine performance due to the simplification of conditions and the difference of engine parts in theprocess of modeling, an engine model correction method based on particle swarm optimization (PSO) was proposed, and theaccuracy of model calculation was improved by using the correction factor. Comparing the calculated results of the modi?fied engine model with the measured data, the results show that the PSO algorithm can significantly improve the accuracyof the model. The maximum error between the calculated and measured values of the model is 4.85% before correction, butthe maximum error is only 0.97% after correction. The correction is effective, and the improvement of the rear-end compo?nents accuracy such as turbines is more obvious than that of the front-end components such as compressors.
查看全文   查看/发表评论  下载PDF阅读器
关闭